Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Vaccines (Basel) ; 9(10)2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1512715

ABSTRACT

The thymus is the main lymphoid organ that regulates the immune and endocrine systems by controlling thymic cell proliferation and differentiation. The gland is a primary lymphoid organ responsible for generating mature T cells into CD4+ or CD8+ single-positive (SP) T cells, contributing to cellular immunity. Regarding humoral immunity, the thymic plasma cells almost exclusively secrete IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Deformity in the thymus can lead to inflammatory diseases. Hassall's corpuscles' epithelial lining produces thymic stromal lymphopoietin, which induces differentiation of CDs thymocytes into regulatory T cells within the thymus medulla. Thymic B lymphocytes produce immunoglobulins and immunoregulating hormones, including thymosin. Modulation in T cell and naive T cells decrement due to thymus deformity induce alteration in the secretion of various inflammatory factors, resulting in multiple diseases. Influenza virus activates thymic CD4+ CD8+ thymocytes and a large amount of IFNγ. IFNs limit virus spread, enhance macrophages' phagocytosis, and promote the natural killer cell restriction activity against infected cells. Th2 lymphocytes-produced cytokine IL-4 can bind to antiviral INFγ, decreasing the cell susceptibility and downregulating viral receptors. COVID-19 epitopes (S, M, and N proteins) with ≥90% identity to the SARS-CoV sequence have been predicted. These epitopes trigger immunity for antibodies production. Boosting the immune system by improving thymus function can be a therapeutic strategy for preventing virus-related diseases. This review aims to summarize the endocrine-immunoregulatory functions of the thymus and the underlying mechanisms in the prevention of COVID-19.

2.
Front Immunol ; 12: 680845, 2021.
Article in English | MEDLINE | ID: covidwho-1394757

ABSTRACT

The current coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome virus 2 (SARS-CoV-2), has resulted in a major global pandemic, causing extreme morbidity and mortality. Few studies appear to suggest a significant impact of gender in morbidity and mortality, where men are reported at a higher risk than women. The infectivity, transmissibility, and varying degree of disease manifestation (mild, modest, and severe) in population studies reinforce the importance of a number of genetic and epigenetic factors, in the context of immune response and gender. The present review dwells on several contributing factors such as a stronger innate immune response, estrogen, angiotensin-converting enzyme 2 gene, and microbiota, which impart greater resistance to the SARS-CoV-2 infection and disease progression in women. In addition, the underlying importance of associated microbiota and certain environmental factors in gender-based disparity pertaining to the mortality and morbidity due to COVID-19 in women has also been addressed.


Subject(s)
COVID-19/immunology , Gonadal Steroid Hormones , Healthcare Disparities , Immunity, Innate , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/mortality , Disease Progression , Female , Global Health , Humans , Male , Microbiota/immunology , Risk Factors , Sex Factors
3.
J Infect Public Health ; 13(12): 1830-1832, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023644

ABSTRACT

The current knowledge about the COVID-19 (Coronavirus Disease-2019) pandemic is still limited and is unravelling with the passing days, especially clinical data, and research in pediatric age group. Recently, there is a new and crucial development reported recently among the COVID-19 asymptomatic children, a novel syndrome affecting asymptomatic COVID-19 children, presenting as a hyperinflammatory syndrome which is like Kawasaki disease shock syndrome. The purpose of this correspondence is to discuss some important findings of the syndrome for the better understanding of the disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Child , Humans , Mucocutaneous Lymph Node Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL